Hierarchical Probabilistic Forecasting of Electricity Demand with Smart Meter Data
نویسندگان
چکیده
Electricity smart meters record consumption, on a near real-time basis, at the level of individual commercial and residential properties. From this, a hierarchy can be constructed consisting of time series of demand at the smart meter level, and at various levels of aggregation, such as substations, cities and regions. Forecasts are needed at each level to support the efficient and reliable management of consumption. A limitation of previous research in this area is that it considered only deterministic prediction. To enable improved decision-making, we introduce an algorithm for producing a probability density forecast for each series within a large-scale hierarchy. The resulting forecasts are coherent in the sense that the forecast distribution of each aggregate series is equal to the convolution of the forecast distributions of the corresponding disaggregate series. Our algorithm has the advantage of synthesizing information from different levels in the hierarchy through forecast combination. Distributional assumptions are not required, and dependencies between forecast distributions are imposed through the use of empirical copulas. Scalability to large hierarchies is enabled by decomposing the problem into multiple lower-dimension sub-problems. Results for UK electricity smart meter data show performance gains for our method when compared to benchmarks.
منابع مشابه
Regularization in Hierarchical Time Series Forecasting with Application to Electricity Smart Meter Data
Accurate electricity demand forecast plays a key role in sustainable power systems. It enables better decision making in the planning of electricity generation and distribution for many use cases. The electricity demand data can often be represented in a hierarchical structure. For example, the electricity consumption of a whole country could be disaggregated by states, cities, and households. ...
متن کاملCoherent Probabilistic Forecasts for Hierarchical Time Series
Many applications require forecasts for a hierarchy comprising a set of time series along with aggregates of subsets of these series. Hierarchical forecasting require not only good prediction accuracy at each level of the hierarchy, but also the coherency between different levels — the property that forecasts add up appropriately across the hierarchy. A fundamental limitation of prior research ...
متن کاملEnergy Consumption Forecasting for Smart Meters
Earth, water, air, food, shelter and energy are essential factors required for human being to survive on the planet. Among this energy plays a key role in our day to day living including giving lighting, cooling and heating of shelter, preparation of food. Due to this interdependency, energy, specifically electricity, production and distribution became a high tech industry. Unlike other industr...
متن کاملShort-Term Load Forecasting Based on the Analysis of User Electricity Behavior
The smart meter is an important part of the smart grid, and in order to take full advantage of smart meter data, this paper mines the electricity behaviors of smart meter users to improve the accuracy of load forecasting. First, the typical day loads of users are calculated separately according to different date types (ordinary workdays, day before holidays, holidays). Second, the similarity be...
متن کاملDisaggregating Multi-State Appliances from Smart Meter Data
Smart electricity meters record the aggregate consumption of an entire building. However, appliance-level information is more useful than aggregate data for a variety of purposes including energy management and load forecasting. Disaggregation aims to decompose an aggregate signal into appliance-by-appliance information. Existing disaggregation systems tend to perform well for single-state appl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017